
J. Fluid Mech. (2007), vol. 586, pp. 119–145. c© 2007 Cambridge University Press

doi:10.1017/S0022112007006738 Printed in the United Kingdom

119

Conditions under which a supercritical turbidity
current traverses an abrupt transition to

vanishing bed slope without a hydraulic jump

SVETLANA KOSTIC AND GARY PARKER
Ven Te Chow Hydrosystems Laboratory, University of Illinois, Urbana-Champaign, IL 61801, USA

skostic@uiuc.edu; parkerg@uiuc.edu

(Received 1 February 2005 and in revised form 4 March 2007)

Turbidity currents act to sculpt the submarine environment through sediment erosion
and deposition. A sufficiently swift turbidity current on a steep slope can be expected
to be supercritical in the sense of the bulk Richardson number; a sufficiently tranquil
turbidity current on a mild slope can be expected to be subcritical. The transition
from supercritical to subcritical flow is accomplished through an internal hydraulic
jump. Consider a steady turbidity current flowing from a steep canyon onto a milder
fan, and then exiting the fan down another steep canyon. The flow might be expected
to undergo a hydraulic jump to subcritical flow near the canyon–fan break, and then
accelerate again to critical flow at the fan–canyon break downstream. The problem
of locating the hydraulic jump is here termed the ‘jump problem’. Experiments
with fine-grained sediment have confirmed the expected behaviour outlined above.
Similar experiments with coarse-grained sediment suggest that if the deposition rate
is sufficiently high, this ‘jump problem’ may have no solution with the expected
behaviour, and in particular no solution with a hydraulic jump. In such cases, the
flow either transits the length of the low-slope fan as a supercritical flow and shoots
off the fan–canyon break without responding to it, or dissipates as a supercritical
flow before exiting the fan. The analysis presented below confirms the existence of
a range associated with rapid sediment deposition where no solution to the ‘jump
problem’ can be found. The criterion for this range is stated in terms of an order-one
dimensionless parameter involving the fall velocity of the sediment. The criterion
is tested and confirmed against the experiments mentioned above. A sample field
application is presented.

1. Introduction
The fluid dynamics of turbidity currents, which are dense bottom underflows

driven by suspended sediment, has attracted considerable interest in recent years
(e.g. Hallworth, Hogg & Huppert 1998; Bonnecaze & Lister 1999; Maxworthy 1999;
Gladstone & Woods 2000). Turbidity currents are close relatives of underflows driven
by, for example, thermohaline effects, such as the underflow of dense, salty water
across the Gibraltar Sill from the Mediterranean Sea into the Atlantic (e.g. Armi &
Farmer 1988; Lane-Serff, Smeed & Postlethwaite 2000). Turbidity currents differ from
such thermohaline flows in that the agent of the excess density, that is, sediment, is
not a conserved quantity. Sediment is free to deposit on the bed or be entrained
from it in accordance with the dictates of the flow–sediment interaction. As a result,
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Figure 1. Seismic image looking upstream at a submarine canyon/fan/canyon complex on
the continental slope off the Niger River, Africa. The zone between the upstream canyon and
the fan is a zone of decreasing bed slope, creating conditions that could cause a turbidity
current to undergo an internal hydraulic jump. The streamwise length of the fan from canyon
exit to canyon entrance is about 9 km; the corresponding vertical relief is about 10 m. Image
courtesy B. Prather & C. Pirmez.

turbidity currents behave differently from conservative dense bottom underflows in
several key ways. This paper is devoted to one of those differences.

Turbidity currents are responsible for the creation of spectacular deep-sea
morphologies. On steeper slopes, they can carve submarine canyons that are hundreds
of metres deep; on shallower slopes, they can deposit submarine fans over tens or
hundreds of kilometres. Figure 1 shows an example of such a morphology (Prather
& Pirmez 2003). The continental slope off the delta of the Niger River, Africa shows
a dip (down-slope) profile with repeated undulations in bed slope. Turbidity currents
have excavated canyons into the steeper zones and deposited small submarine fans in
the shallower zones. In figure 1, an upstream canyon debouches onto a fan of much
lower slope; the fan ends in another canyon where slope again increases. Submarine
fans may be either unchannelized or channelized. The fan in figure 1 is channelized.
That is, at any given time, the flow of the turbidity current on the fan is confined to a
channel, but over time the channel shifts and avulses so as to spread sediment across
the entire fan. In the work reported here, the fan is assumed to be channelized. For
simplicity, the channel on the fan and the channel within the canyon upstream are
assumed to have the same, constant width.

A key parameter governing the dynamics of dense bottom flows is the bulk
Richardson number Ri (e.g. Ellison & Turner 1959), where Ri = RgCh/U 2 and U

denotes layer-averaged flow velocity, C denotes layer-averaged volume concentration
of suspended sediment, h denotes layer thickness, g denotes the acceleration due
to gravity and R denotes the submerged specific gravity of sediment, equal to 1.65
for quartz. (More formal definitions follow below.) Flows for which Ri < 1 are swift
supercritical flows; flows for which Ri > 1 are tranquil subcritical flows. It is reasonable
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Figure 2. Experimental configuration of Garcia (1989).

to expect that the turbidity currents that formed the morphology of figure 1 might
have been supercritical in the canyons and subcritical on the fan.

In order to make the transition from supercritical to subcritical flow, a dense
bottom flow must generally undergo an internal hydraulic jump (e.g. Yih & Guha
1955). Many sedimentologists have tried to infer such jumps from the sedimentary
patterns visible in outcrops (e.g. Mutti 1977; Russell & Arnott 2003). The only direct
knowledge of internal hydraulic jumps due to turbidity currents, however, comes from
experiments.

Perhaps the first comprehensive set of experiments on turbidity currents undergoing
hydraulic jumps were those of Garcia (1989, 1993) and Garcia & Parker (1989). The
configuration of the experiments is shown in figure 2. The currents were quasi-steady.
They flowed from a submerged sluice gate onto a region with a bed slope S of 0.08.
At a distance of 5 m from the inlet point, the bed slope dropped to zero; this region
extended for another 6.6 m to a submerged free overfall, where the turbidity current
debouched into a damping tank.

The geometry of figure 2 can be thought of as a one-dimensional analogue of the
two-dimensional configuration of figure 1. The sloping region in figure 2 is analogous
to the upstream canyon of figure 1; the horizontal region in figure 2 is analogous
to the channelized fan in figure 1, and the free overfall at the downstream end of
figure 2 is analogous to the canyon at the downstream end of the fan in figure 1.

Garcia (1989, 1993) used four grades of sediment in order to study the dynamics
of net-depositional turbidity currents at slope breaks. In the case of the two finer
grades of sediment, 4 µm material (NOVA) and 9 µm material (DAPER), supercritical
flows emanating from the inlet underwent a hydraulic jump near the slope break.
The subcritical flow downstream then accelerated in the vicinity of the free overfall
and debouched into it. A subcritical dense underflow passing a free overfall must
attain a critical Richardson number; for most purposes, this critical value can be
approximated as unity. Henderson (1966) justifies this for the case of open channel
flow; Turner (1973) provides the basis for the extension of the conclusion to dense
underflows. The general pattern of flow observed in the NOVA and DAPER runs is
schematized by the solid line of figure 2.

In the case of otherwise similar experiments with coarser sediment, i.e. 30 µm
material (GLASSA), the hydraulic jump was barely, if at all, manifest. In the case of
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65 µm sediment (GLASSB), a hydraulic jump was clearly absent. The absence of the
hydraulic jump has been confirmed by the numerical simulations of Choi & Garcia
(1995) and Kostic & Parker (2004, 2006).

One possibility is that the horizontal domain of the experiments of Garcia (1989,
1993) was too short for a hydraulic jump in the case of the coarser sediments.
A second possibility, however, is that no jump is possible when the sediment is
‘sufficiently coarse’ in some dimensionless sense.

This speculation allows articulation of the ‘jump problem’. Consider a steady
supercritical turbidity current debouching onto a domain of horizontal bed ending in
a free overfall. Is there any length L of the horizontal domain that allows a hydraulic
jump to subcritical flow within it, such that this subcritical flow attains the critical
condition in Richardson number at x = L?

It is shown below that for the case of a conservative dense underflow the ‘jump
problem’ always has a solution. It is possible to specify a value of L that is too short
for a hydraulic jump, in which case the supercritical flow shoots off the free overfall
without responding to it, as shown in figure 2. If L is allowed to be a free variable,
however, a range of values of L for which a hydraulic jump will occur on the domain
can always be found.

The essential result of the analysis presented below is the conclusion that in the
case of turbidity currents undergoing sufficiently rapid deposition, the ‘jump problem’
has no solution, regardless of the length L. In such cases, the turbidity current will
either flow off the end of the domain for sufficiently short values of L, or dissipate
as a supercritical flow within the domain for sufficiently long values of L. A simple
dimensionless criterion discriminating between regions where the ‘jump problem’ has
a solution and where it does not is derived.

2. Governing equations
A turbidity current is a dense bottom underflow driven by the presence of suspended

sediment in the water column. The suspended sediment renders the bottom underflow
denser than the ambient water above, and thus drives the current down the bottom
slope. Here, the case of a turbidity current driven by a dilute suspension of sediment
is considered. For simplicity, it is assumed that the flow is driven only by sediment,
so that there is no difference between the temperature or salinity of the water in
the underflow and the ambient water above. The ambient water is assumed to be at
rest and in hydrostatic equilibrium, and is assumed to have a layer thickness that is
infinite (or more precisely, at least an order of magnitude larger than the thickness of
the turbidity current). This final assumption is easily justified for turbidity currents in
the deep sea, where current thickness can be expected to be of the order of metres to
tens of metres, whereas the depth of the ambient water above can range from a few
hundreds of metres to over 4000 m (e.g. Pirmez & Imran 2003).

The equations governing a turbidity current can be expressed at a variety of levels
of complexity, ranging from the box model of, for example, Gladstone & Woods
(2000) to the full turbulence closure scheme of, for example, Felix (2001). Here, the
layer-averaged approach of Parker, Fukushima & Pantin (1986) is employed. Let
x denote a boundary-attached streamwise coordinate and y denote a coordinate
orthogonal to x and thus directed upward normal from the bed. The streamwise
flow velocity averaged over turbulence is denoted as u, and the volume concentration
of suspended sediment averaged over turbulence is denoted as c. Since the ambient
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water is in hydrostatic equilibrium, it can be assumed that u → 0 and c → 0 as y → ∞.
The flow is taken to be uniform in the transverse direction.

Layer-averaged flow velocity and concentration are denoted as U and C,
respectively, where

U 2h =

∫ ∞

0

u2 dy, (1)

Uh =

∫ ∞

0

u dy, (2)

UCh =

∫ ∞

0

uc dy, (3)

and h denotes layer thickness. Parker et al. (1986) (see also Baines 1999) obtain the
following forms for layer-integrated balance of momentum, flow mass and mass of
suspended sediment:

∂Uh

∂t
+

∂U 2h

∂x
= − 1

2
Rg

∂Ch2

∂x
+ RgChS − u2

∗, (4)

∂h

∂t
+

∂Uh

∂x
= ewU, (5)

∂Ch

∂t
+

∂UCh

∂x
= vs(es − cb). (6)

In the above equations, S denotes streamwise bed slope and the parameter R, or
submerged specific gravity of sediment, is given as

R =
ρs

ρ
− 1, (7)

where ρs denotes the density of sediment and ρ denotes the density of sediment-free
water. In addition, vs denotes the fall velocity of the suspended sediment, which is
characterized in terms of a single size for simplicity. The parameters u∗, ew and es

denote bed shear velocity, dimensionless coefficient of entrainment of ambient water
from above, and dimensionless coefficient entrainment of sediment from the bed,
respectively. Finally, cb denotes a near-bed value of the local concentration averaged
over turbulence c at level y = b, where b/h � 1. Equations (4)–(6) include several
order-one shape factors. For example, the term RgChS in (4) is more accurately
written as αRgChS, where

α =

∫ ∞

0

fc dξ, fc =
c

C
, ξ =

y

h
, (8)

All the shape factors take the value of unity for a top-hat assumption for velocity
and concentration profiles, i.e.

u

U
=

c

C
=

{
1, 0 � ξ � 1,

0, 1 < ξ.
(9)

Parker, Garcia & Fukushima (1987) and Garcia (1989) have evaluated the relevant
shape factors for a range of experimental turbidity currents and found values not far
from unity. Here, the shape factors are set to unity as a matter of simplicity.

Equations (4)–(6) are closed by means of assumptions for shear velocity u∗,
coefficient of water entrainment ew , near-bed suspended sediment concentration cb
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and coefficient of sediment entrainment es . Shear velocity u∗ is related to layer-
averaged flow velocity U by means of a dimensionless bed friction coefficient cf , so
that

u2
∗ = cf U 2. (10)

Here, cf is approximated as a specified constant. Water entrainment is specified in
terms of the empirical relation of Fukushima, Parker & Pantin (1985):

ew =
0.00153

0.0204 + Ri
, (11)

where Ri denotes a bulk Richardson number, defined as

Ri =
RgCh

U 2
=

Rgq

U 3
. (12)

In (12), q denotes the volume transport rate of suspended sediment per unit width,
given by the relation

q = UCh. (13)

Near-bed sediment concentration cb is related to the layer-averaged value C as

cb = r0C, (14)

where r0 � 1 is a dimensionless coefficient, with the equality holding only for the case
of the top-hat assumption. In general, r0 is a function of the flow (Parker 1982). Here
it is approximated as a constant for simplicity, an assumption that can be generalized
at a future time.

Now consider the case of steady current that is free to develop in the streamwise
direction. For this case, (4)–(6) reduce with the aid of (10), (13) and (14) to the
following forms for gradually varied flow.

dU

dx
=

RiS − ew

(
1 + 1

2
Ri

)
− cf + 1

2
Ri r0

(
1 − Uesh

r0q

)
vs

U

1 − Ri

U

h
(15a)

dh

dx
=

−RiS + ew

(
2 − 1

2
Ri

)
+ cf − 1

2
Ri r0

(
1 − Uesh

r0q

)
vs

U

1 − Ri
(15b)

dq

dx
= −r0

q

h

(
1 − Uesh

r0q

)
vs

U
(15c)

The work reported here focuses on a purely depositional steady turbidity current,
for which es vanishes. This assumption follows the tradition of a considerable body
of literature on turbidity currents and related flows containing particulate material
(e.g. Hallworth et al. 1998; Maxworthy 1999; Gladstone & Woods 2000; Kostic &
Parker 2003a, b).

3. Purely depositional supercritical turbidity current flowing into a zone
of vanishing bed slope

The goal of the analysis presented here is the delineation of conditions for which
a steady turbidity current does not undergo a hydraulic jump near a slope break no
matter how long is the length L of the horizontal region of figure 2. Now consider
the configuration of the same figure 2. If a steady supercritical turbidity current is to
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pass the break in slope and onto the zone of vanishing slope without undergoing a
hydraulic jump to subcritical flow, it follows that the turbidity current must still be
supercritical by the time it reaches the break in slope. That is, taking the origin for
the streamwise coordinate to be the break in slope, it follows that

Ri0 ≡ Ri|x=0 < 1. (16)

Bed slope S vanishes on the domain x � 0. If, in addition, the turbidity current is
assumed to be purely depositional (es = 0), and hatted dimensionless variables are
introduced such that

ĥ =
h

h0

, Û =
U

U0

, q̂ =
q

q0

, x̂ = cf
x

h0

, (17a–d)

with U0, h0 and q0 corresponding to the values of U , h and q at x =0, (15a–c)
transform into the respective dimensionless forms

dÛ

dx̂
=

−1 − ew

cf

(
1 + 1

2
Ri0

q̂

Û 3

)
+ 1

2
Ri0

q̂

Û 4
ϕ

1 − Ri0
q̂

Û 3

Û

ĥ
, (18a)

dĥ

dx̂
=

1 +
ew

cf

(
2 − 1

2
Ri0

q̂

Û 3

)
− 1

2
Ri0

q̂

Û 4
ϕ

1 − Ri0
q̂

Û 3

, (18b)

dq̂

dx̂
= −ϕ

q̂

Û ĥ
, (18c)

with

Ri = Ri0
q̂

Û 3
, Ri0 =

Rgq0

U 3
0

(19a, b)

ϕ = r0

vs

cf U0

. (20)

The boundary conditions on (18a–c) are

Û |x̂=0 = 1, ĥ|x̂=0 = 1, q̂|x̂=0 = 1. (21a–c)

As shown in figure 2, the domain within which (18a–c) are to be solved ends in a
free overfall located at x = L. If the flow does indeed undergo a jump to a subcritical
flow within the domain, then the bulk Richardson number must achieve the value of
unity at the overfall. That is, the following condition must be satisfied if a hydraulic
jump occurs within the domain;

Ri|x̂=L̂ = Ri0

(
q̂

Û 3

)∣∣∣∣
x̂=L̂

= 1, (22)

where

L̂ = cf
L

h0

. (23)

4. Case of a steady conservative density underflow
A conservative density underflow is one for which the agent of the density difference

is conserved. The equations governing a steady conservative density underflow are
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recovered from (18a–c) by taking the limit vs → 0 (vanishing fall velocity of the
sediment), resulting in the relations

dÛ

dx̂
=

−1 − ew

cf

(
1 + 1

2

Ri0

Û 3

)

1 − Ri0

Û 3

Û

ĥ
, (24a)

dĥ

dx̂
=

1 +
ew

cf

(
2 − 1

2

Ri0

Û 3

)

1 − Ri0

Û 3

, (24b)

where since q̂ = 1 everywhere

Ri =
Ri0

Û 3
. (25)

An example of a conservative density underflow is one driven by excess density
associated with thermohaline effects, in which case the following transformation is
appropriate; where �ρ̄ denotes the layer-averaged excess density of the flow,

RC → �ρ̄

ρ
. (26)

Although the case of a conservative density underflow has been studied extensively
(e.g. Ellison & Turner 1959), it is useful to review it before progressing to the
non-conservative case.

The solution of (24a, b) subject to (21a, b) on the domain of figure 2 can be
implemented as follows. Assuming that ew is specified by (11), (24a, b) can be solved
subject to the boundary conditions (21a, b) for any specified value of upstream
Richardson number Ri0 and friction coefficient cf . Here, the case Ri0 < 1 (supercritical
flow upstream) is considered first. It can be seen the numerator on the right-hand
side of (24a) is always negative, whereas the denominator on the right-hand side of
(24a) is positive. As a result, Û must decrease monotonically in x̂, in which case Ri
must increase in accordance with (25). When Û is reduced to the value

Û = (Ri0)
1/3, (27)

the Richardson number Ri attains the value unity, and the right-hand sides of both
(24a) and (24b) become singular. The distance L̂sup max at which this condition is
reached defines the maximum possible length of a supercritical turbidity current
emanating from the point x̂ = 0. Thus in general,

L̂sup max = L̂sup max(Ri0, cf ). (28)

This functional relation is shown as the lower line in figure 3 for the case cf =0.005.

The numerical computations used to obtain the relation for L̂sup max in figure 3, as well
as all other numerical computations reported here, were done by means of a strong
stability-preserving (SSP) Runge–Kutta method of third order. The algorithm satisfies
the TVD property necessary to preserve monotonicity of the numerical solution and
avoid unphysical oscillations that often plague the results of ordinary Runge–Kutta
methods (Gottlieb, Shu & Tadmor 2001).

At any point x̂J where 0 � x̂J < L̂sup max, the current may undergo a hydraulic jump to
subcritical flow. Such jumps generally entrain little ambient water (e.g. Wilkinson &
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Figure 3. Regime diagram for the hydraulic jump of a conservative underflow, calculated
for the case cf = 0.005. The upper line denotes the condition L̂ = L̃free, i.e. the condition for
which the zone of subcritical flow is equal to the length of the domain. When L̂ > L̃free, the
reach downstream of the slope break of figure 2 is too long to support a hydraulic jump,
and instead the flow backs up and the jump occurs upstream of the slope break in figure 2.

The lower bound denotes the condition L̂= L̂sup max, for which the supercritical flow becomes
critical precisely at the overfall at the downstream end of the domain. When L̂< L̂sup max

the supercritical flow undergoes no jump on the horizontal domain of figure 2, and remains
supercritical as it shoots off the free overfall in figure 2.

Wood 1971; Stefan & Hayakawa 1972; Baddour 1987), so that the relations for
conjugate Richardson number, flow velocity and flow thickness are given as

RicJ =

[√
1 + 8/RiJ − 1

2

]3

RiJ > 1, (29)

Û cJ

Û J

=

[√
1 + 8/RiJ − 1

2

]−1

< 1, (30)

ĥcJ

ĥJ

=

[√
1 + 8/RiJ − 1

2

]
> 1, (31)

where

RiJ = Ri|x̂=x̂J
, Û J = Û |x̂=x̂J

, ĥJ = ĥ|x̂=x̂J
(32a–c)

(e.g. Yih & Guha 1955). These conjugate values define the boundary conditions for
the conjugate subcritical flow downstream of the jump. The governing equations for
this flow may be written as

dŨ

dx̃
=

−1 − ew

cf

(
1 + 1

2

RicJ

Ũ 3

)

1 − RicJ

Ũ 3

Ũ

h̃
, (33)

dh̃

dx̃
=

1 +
ew

cf

(
2 − 1

2

RicJ

Ũ 3

)

1 − RicJ

Ũ 3

, (34)
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where

Ũ =
U

UcJ

=
Û

Û cJ

, h̃ =
h

hcJ

=
ĥ

ĥcJ

, Ri =
RicJ

Ũ 3
, x̃ = x̂ − x̂J , (35a–d)

and UcJ and hcJ denote the dimensioned conjugate flow velocity and thickness,
respectively. The boundary conditions on (33) and (34) are

Ũ |x̃=0 = 1, h̃|x̃=0 = 1. (36a, b)

Again the numerator of the right-hand side of (33) is negative, but the denominator
of the same must be negative as well, at least near x̃ = 0. As a result, Ũ must increase
monotonically in x̃ until Ri attains the value unity, at which the right-hand sides of
(33) and (34) become singular and the condition of a free overfall is reached. For any
given values of RicJ > 1 and cf the distance L̃free at which the free overfall is obtained
can be computed, so that

L̃free = L̃free(RicJ , cf ). (37)

No solution to the subcritical problem is possible over domains L̃ with lengths in
excess of L̃free.

Now for any value x̂J satisfying the condition 0 < x̂J < L̂sup max, a complete solution
which starts with the supercritical Richardson number Ri0 < 1 at x̂ =0, undergoes a
hydraulic jump at x̂J and satisfies the free-overfall condition (22) at x̂ = L̂, is obtained
by (i) solving (24a) and (24b) subject to (21a) and (21b) from x̂ =0 to x̂ = x̂J ,
(ii) computing RicJ from (29)–(31), (iii) solving (33) and (34) subject to (36a) and
(36b) from x̃ = 0 to x̃ = L̃free and (iv) computing L̂ as

L̂ = x̂J + L̃(RicJ , cf ). (38)

For any given pair of values of Ri0 < 1 and cf and any specified value of x̂J , however,
RicJ can be computed as a function of x̂J , Ri0 and cf . It follows, then, that (38)
reduces to the form

L̂ = L̂(Ri0, cf , x̂J ), 0 � x̂J � L̂sup max. (39a, b)

Inverting the relation of (39),

x̂J = x̂J (Ri0, cf , L̂), 0 � x̂J � L̂sup max. (40a, b)

The limits in (39) and (40) have specific physical meanings. When x̂J =0, the
hydraulic jump occurs precisely at the slope break of figure 3, so that the conjugate
Richardson number RicJ becomes equal to the conjugate Richardson number Ri0J
associated with the upstream Richardson number Ri0. In this case,

L̂ = L̃free(Ri0J , cf ), (41a)

Ri0J =

[√
1 + 8/Ri0 − 1

2

]3

Ri0 > 1. (41b)

For the case L̂> L̃free(Ri0J , cf ), it is found that x̂J < 0; the reach L̂ downstream of
the slope break in figure 2 is too long to support a hydraulic jump on it. Instead,
the flow backs up and the jump occurs on the sloping region of figure 2 upstream of
the slope break. For the case L̂ < L̂sup max(Ri0, cf ), on the other hand, the reach is too
short for a hydraulic jump, and supercritical flow shoots off the free overfall without
feeling it (figure 2).



Transition of supercritical turbidity current to vanishing bed slope 129

2.5

2.0

1.5

1.0

0.5

0 0.05 0.10 0.15 0.20

R
i, 

Û
, ĥ
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Figure 4. Results of a sample calculation for a conservative underflow which
undergoes a hydraulic jump.

Since for the case x̂J = 0 the value Ri0J can be computed directly from Ri0 from
(41b), it follows that the maximum bound on L̂, i.e. L̂free(Ri0J , cf ) can be computed
from a knowledge of Ri0 and cf . With this in mind, a regime diagram for the
occurrence of a hydraulic jump of a conservative underflow within the domain
0 � x̂ � L̂ is given in figure 3, in which cf has been set equal to 0.005 as an example.

The physical meaning of the conditions L̂> L̃free and L̂ < L̂sup max merit some
elaboration. The condition x̂J = 0 locates the jump precisely at the slope break in
figure 2. Between (37) and (38), then, L̂ = L̃free for this case. Forcing the condition
L̂ > L̃free causes x̂J to become negative in (38). In physical terms, this means that the
subcritical flow calculated upstream of the free overfall is so slow and deep at the
slope break of figure 2 that it creates a pressure barrier that precludes a jump there.
Instead, the subcritical flow backs up onto the sloping reach, and the jump occurs
upstream of the slope break. When the hydraulic jump does occur on the horizontal
region of figure 2, however, it is mediated by the condition that supercritical flow is
incapable of transiting the horizontal reach, i.e. L̂sup max <L̂. That is, the supercritical
flow reaches a singular state with Ri =1 before the free overfall. In physical terms,
then, the only way the flow can reach the free overfall is by undergoing a hydraulic
jump somewhere upstream of x̂ = L̂sup max. If L̂sup max >L̂, on the other hand, the
supercritical flow can transit the horizontal domain of figure 2 without the need for
a hydraulic jump. With nothing to force a jump, the supercritical flow shoots off the
end of the free overfall without feeling it.

A sample calculation is given in figure 4. In the example, the values of Ri0 and cf

are 0.2 and 0.005, respectively. For this case, the value of L̂sup max is found to be 0.1872.
The jump is located so as to satisfy the condition x̂J /L̂sup max = 0.6. The values RiJ
and RicJ are found to be 0.469 and 2.012, respectively. The value of L̃free is computed
as 0.0732, so that L̂= 0.6 × 0.1872 + 0.0732 =0.1855. The computed profiles of Ri, Û

and ĥ are given in figure 4.
For any given values of Ri0, cf and L̂ it is necessary (i) to determine whether it

is possible for a hydraulic jump to occur on the domain 0 � x̂ � L̂, and if so (ii) to
iterate for the value of x̂J within the bounds 0 � x̂J � L̂sup max. The same iteration
process that determines x̂J also determines the solutions to (24a) and (24b) on the
supercritical reach and (33) and (34) on the subcritical reach.
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Figure 5. Calculations of Ri versus x̂ for supercritical depositional turbidity currents with
various values of ϕ, all with an upstream value Ri0 = 0.2 and a value of cf of 0.005. For
ϕ > ϕsupcrit, the turbidity current is unable to attain a value of Ri of 1 anywhere.

5. The case of a purely depositional steady turbidity current with finite
fall velocity

A turbidity current differs from a conservative bottom underflow in that the agent
of the density difference, i.e. sediment, can exchange with the bed through erosion
and deposition. Here, the analysis of the previous section is extended to the case of a
steady purely depositional turbidity current.

Supercritical flows are considered first. The equations to be solved are (18a)–(18c)
subject to (21a)–(21c), and the further constraint 0<Ri0 < 1. It was shown in the
previous section that the case vs = 0, or thus ϕ = 0 according to (20) has solutions
such that Ri =1, and the right-hand sides of (18a) and (18b) become singular at
x̂ = L̂sup max(Ri0, cf ). It might be expected that L̂sup max should change with increasing
dimensionless fall velocity ϕ, and indeed it does. Of considerably more interest,
however, is that solutions attaining Ri = 1 cease to exist if ϕ exceeds a critical value
ϕsupcrit(Ri0, cf ). Recalling the definition of ϕ from (20), the implication is that a
sufficiently high fall velocity vs (and thus deposition rate) renders a supercritical flow
incapable of attaining the condition Ri= 1.

To see this, the case Ri0 = 0.2 and cf = 0.005 is considered as an example. Plots of
Ri versus x̂ are given in figure 5 for the cases ϕ = 0, 0.5, 1, 1.389, 2, 4 and 10. Within
the range 0 <ϕ < 1.389 it is found that solutions attaining a singularity at Ri =1 do
exist; the associated value L̂sup max is found to be an increasing function of ϕ. Within
the range 1.389 <ϕ, however, a Richardson number of unity is never attained, and
no singularity appears. That is, Ri first increases above Ri0, reaches a maximum value
less than unity, and thence declines monotonically toward zero.

The same general behaviour is found for any combination (Ri0, cf ) under the
constraint Ri0 < 1. That is, a critical value

ϕ = ϕsupcrit(Ri0, cf ) (42)

exists such that within the range 0 � ϕ < ϕsupcrit solutions exist such that Ri attains
unity at a singular point, and within the range ϕ >ϕsupcrit Ri never attains unity and
no singularity appears. A plot of ϕsupcrit versus Ri0 and cf is given in figure 6.
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Figure 6. Plot of ϕsupcrit versus Ri0 for various values of cf .

12

10

8

6

4

2

0 1 2 3 4 5

Ri

x̂

0.25
0

0.5

0.75

� = 1.0

� = �subcrit = 0.668

Figure 7. Calculations of Ri versus x̂ for subcritical depositional turbidity currents with
various values of ϕ, all with an upstream value of Ri of 6.00 and a value of cf of 0.005. For
ϕ > ϕsubcrit, the turbidity current is unable to attain a value of Ri of 1 anywhere.

A point of interest with regard to figure 5 concerns the profile of Ri versus x̂ for
ϕ = ϕsupcrit. For this value of ϕ and only this value, the profile passes smoothly through
Ri = 1 without a singularity. This behaviour is found to generalize to all values of Ri0
and cf .

The corresponding subcritical problem is obtained by solving (18a)–(18c) subject to
(21a)–(21c), and the further constraint Ri0 > 1. For the case ϕ =0, it was shown in the
previous section that the solutions attain the value Ri = 1, where they become singular,
at x̂ = L̂free(Ri0, cf ). (Make the transformations x̂ → x̃, L̂free = L̃free and Ri0 → RicJ in
comparing with the material in the previous section on subcritical flows.) Again, it
is found that (i) L̂free increases with increasing ϕ, and (ii) as ϕ increases beyond a
threshold value ϕsubcrit, the solutions fail to reach a Richardson number of unity
and do not become singular anywhere. Profiles illustrating this are shown for
the case (Ri0, cf ) = (6, 0.005) in figure 7; solutions become singular at Ri = 1 for
0 < ϕ � ϕsubcrit = 0.668, but for ϕ > ϕsubcrit the Richardson number attains a minimum
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Figure 8. Plot of ϕsubcrit versus Ri0 for various values of cf .

value above unity, and then increases monotonically without any singularity. A plot
of ϕsubcrit versus Ri0 and cf is given in figure 8.

As opposed to the case of supercritical flow, the subcritical solution remains singular
at Ri= 1 for every value of ϕ for which it attains the value Ri =1, including ϕsubcrit.

Discussions of (i) the physical significance of the role of the dimensionless parameter
ϕ in mediating the jump problem and (ii) values of ϕ that might be encountered in the
laboratory and the field are deferred until § § 8 and 9. It suffices to note here, however,
that the parameter ϕ scales the effect of sediment deposition on the streamwise
pressure gradient acting on the turbidity current. As explained in § 8, sediment
deposition acts to hinder (i) flow deceleration in the case of supercritical flow, and
(ii) flow acceleration in the case of subcritical flow.

6. Conditions for the impossibility of a hydraulic jump
The question of interest here is whether or not a steady turbidity current that

is supercritical as it enters the domain [0, L] of figure 2 can undergo a hydraulic
jump on that domain. It is of value to review the entire formulation for the case
ϕ > 0. In the event that a jump can occur at some point x̂J , the flow is supercritical
in the range 0 � x̂ � x̂J and subcritical on the domain x̂ > x̂J or x̃ > 0. Within the
supercritical range, the governing equations are (18a)–(18c) subject to (21a)–(21c) and
the constraint Ri0 < 1. Within the subcritical range, the governing equations become

dŨ

dx̃
=

−1 − ew

cf

(
1 + 1

2
RicJ

q̃

Ũ 3

)
+ 1

2
RicJ

q̃

Ũ 4
ϕ̃

1 − RicJ
q̃

Ũ 3

Ũ

h̃
, (43a)

dh̃

dx̃
=

1 +
ew

cf

(
2 − 1

2
RicJ

q̃

Ũ 3

)
− 1

2
RicJ

q̃

Ũ 4
ϕ̃

1 − RicJ
q̃

Ũ 3

, (43b)

dq̃

dx̃
= −ϕ̃

q̃

Ũ h̃
, (43c)
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where

Ũ =
U

UcJ

=
Û

Û cJ

, h̃ =
h

hcJ

=
ĥ

ĥcJ

, q̃ =
q

qJ

=
q̂

q̂J

, (44a–c)

Ri =
RicJ

Ũ 3
, x̃ = x̂ − x̂J , (44d, e)

ϕ̃ = r0

vs

cf UcJ

=
ϕ

ÛcJ

, (45)

RicJ =

[√
1 + 8/RiJ − 1

2

]3

RiJ > 1, (46a)

Û cJ

Û J

=

[√
1 + 8/RiJ − 1

2

]−1

< 1, (46b)

ĥcJ

ĥJ

=

[√
1 + 8/RiJ − 1

2

]
> 1, (46c)

q̂cJ = q̂J . (46d)

The boundary conditions on (43) are

Ũ |x̃=0 = 1, h̃|x̃=0 = 1, q̃|x̃=0 = 1. (47a–c)

The problem can be posed as follows. Let the values of cf , ϕ and Ri0 < 1 be

specified. For these values, can any value L̂ be found such that (i) the flow undergoes
a hydraulic jump within the domain 0 < x̂ < L̂ and (ii) the resulting subcritical flow
satisfies the free overfall condition:

Ri|x̂=L̂ = 1 (48)

at the downstream end of the domain?
The solution can be implemented by solving the supercritical problem of (18)–(21)

starting from any value Ri0 < 1 for Ri, Û , ĥ and q̂ as functions of x̂, and asking
whether a hydraulic jump is possible at any value x̂. The same solution that yields
Ri, Û , ĥ and q̂ as functions of x̂ also yields the conjugate Richardson number Ric in
accordance with (46a) and associated value ϕ̃ for the subcritical regime in accordance
with (45) and (46b) (in both cases the subscript J has been omitted for simplicity).
The subcritical problem is then defined by setting ϕ̃ = ϕ̃J in (43) (with RicJ equated
to Ric).

The subcritical problem has a solution satisfying (48) only if

ϕ̃ � ϕsubcrit. (49)

For any given value cf , it is possible to plot ϕsubcrit as a function of Ric in accordance
with figure 8. For the same value of cf and specified values of Ri0 and ϕ, the solution
of (18) yields values of ϕ̃ and Ric for every admissible value of x̂. A plot of ϕ̃ and
ϕsubcrit versus Ric reveals whether or not a solution exists. If ϕ̃ plots everywhere above
ϕsubcrit, then no solution with a hydraulic jump is possible, no matter what the value
of L̂.

A sample implementation of this procedure is given in figure 9 for the case Ri0 = 0.3
and cf =0.005. In addition to a plot of ϕsubcrit versus Ric, plots of ϕ̃ versus Ric are
given for the cases ϕ = 0.5, 1.0, 1.668 (=ϕsupcrit) and 3. In the case ϕ = 0.5, it can be seen
that ϕ̃ plots below ϕsubcrit over the entire range of values of Ric, indicating that a value
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Figure 10. Plot of Ri, ϕ̃, ϕsubcrit and Ric versus x̂ for the case Ri0 = 0.3 and cf =0.005.
Solutions to the jump problem can only be found only by locating the jump at a value x̂ = x̂J

for which ϕ̃ � ϕsubcrit.

L̂ can be found such that a hydraulic jump to a subcritical flow eventually attaining
the condition Ri =1 is realized for all admissible values of x̂, i.e. 0 � x̂ � L̂sup max.

In the case ϕ = 1.0 of figure 9, however, ϕ̃ plots above ϕsubcrit for values of Ric above
1.78. Within this range, no hydraulic jump to a subcritical flow eventually satisfying
the criterion Ri = 1 is possible. In figure 10, Ri, Ric and ϕ̃ of the supercritical solution
are plotted versus x̂ for the case ϕ = 1. In addition, the value of Ric is used to compute
ϕsubcrit as a function of x̂ for the same case of ϕ = 1. It can be seen that the condition
(49) ensuring the existence a hydraulic jump to subcritical flow eventually attaining
the condition Ri= 1 is satisfied only for the range 0.093 � x̂J � L̂sup max, where in the
present case L̂sup max = 0.174.

It is seen in figure 9 that the case ϕ = 1.638 =ϕsupcrit corresponds to the threshold
condition for the existence of a hydraulic jump to any solution eventually reaching
Ri= 1 for any L̂. At this condition, the lowest value of ϕ̃ (at Ri = Ric = 1) of 2.90 is
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Figure 11. The figure shows plots of ϕ̃ = ϕsupcrit(Ri0, cf )/Û c[Ric; Rio, cf , ϕsupcrit(Ri0, cf )] for
the case cf = 0.005 and eleven values of Ri0 (0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9).
Also shown is the plot of ϕsubcrit versus Ric for the same value of cf . The lines of ϕ̃ versus Ric
are seen to collapse on top of each other.

precisely equal to the highest possible value of ϕsubcrit. It is again seen from figure 9
that when ϕ = 2 >ϕsupcrit, ϕ̃ exceeds ϕsubcrit everywhere, so that no solution with a
hydraulic jump to subcritical flow eventually attaining Ri = 1 is possible.

The above result is an extremely simple one. The threshold value ϕnosol of ϕ above
which no solution exists such that the flow (i) undergoes a hydraulic jump to subcritical
flow and (ii) eventually attains the free overfall condition farther downstream can be
stated as

ϕnosol = ϕsupcrit. (50)

The above result generalizes. In figure 11, ϕ̃ is plotted against Ric for the case
cf =0.005 and the values of Ri0 = 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
and 0.9, where for each value of Ri0, ϕ has been set equal to the corresponding value
of ϕsupcrit. Also shown in the same plot is ϕsubcrit versus Ric. In every case, the line of ϕ̃

versus Ric plots above the curve for ϕsubcrit versus Ric, with the exception of the point
Ric = 1, where ϕ̃ becomes equal to ϕsubcrit. The same result was obtained for values
of cf in the range [0.001, 0.05]. Thus, figure 6, i.e. ϕsupcrit(Ri0, cf ) also specifies the
threshold condition above which no hydraulic jump to a subcritical flow eventually
satisfying the condition Ri = 1 is possible.

7. Mathematical interpretation of the result
Figure 11 shows a feature that is too good to be true without reflecting some

fundamental feature of the governing equations. For any given values of cf , ϕ and
starting value Ri0 < 1 it is possible to compute Û , ĥ, q̂ and Ri, and thus the conjugate
values Û c and Ric versus x̂ according to (18), (19a), (29) and (30). (Again the subscript
J has been omitted here for simplicity.) The solution allows us to determine, for
example, the functional relations Û (Ri; Ri0, cf , ϕ) and Û c(Ric; Ri0, cf , ϕ). Figure 11
shows plots of the parameter ϕ̃ associated with the critical value ϕsupcrit of ϕ for each
value of Ri0. That is, it shows plots of

ϕ̃ =
ϕsupcrit(Ri0, cf )

Û c[Ric; Ri0, cf , ϕsupcrit(Ri0, cf )]
(51)
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for the case cf = 0.005 and eleven values of Ri0 ranging from 0.05 to 0.9. In all cases,
the lines plot on top of each other. The values of ϕ̃, defining this line, plot everywhere
above the maximum value of ϕsubcrit, i.e.

ϕsubcrit,1 ≡ ϕsubcrit(Ri, cf )|Ri=1, (52)

except for the point Ric =1, where ϕ̃ = ϕsubcrit,1.

Since Ric is related to Ri and Û c to Û by (29) and (30), respectively, the same
collapse should show up in a plot of ϕsupcrit(Ri0, cf )/Û (Ri; Ri0, cf ). This is demonstrated

in figure 12, where ϕsupcrit(Ri0, cf )/Û (Ri; Ri0, cf ) is plotted against Ri for Ri0 = 0.1, 0.4
and 0.8, and for cf = 0.001, 0.005 and 0.05.

For a given cf , the coincidence of all the lines in figures 11 and 12 for a given
value of cf is a reflection of a similarity property of the governing equations, (18).
As noted in the previous section, all supercritical solutions for Û and ĥ satisfying the
condition of figure 11, i.e. ϕ = ϕsupcrit(Ri0, cf ) pass through Ri = 1 without a singularity.
According to L’Hôpital’s rule, the only way this can be possible in (18a) and (18b) is
if the following condition is satisfied;

ϕsupcrit(Ri0, cf )

Û [Ri; Ri0, cf , ϕsupcrit(Ri0, cf )]
= 2

(
1 +

3

2

ew1

cf

)
, (53)

where Û 1 is an abbreviation defined as

Û 1 ≡ Û [Ri; Ri0, cf , ϕsupcrit(Ri0, cf )]|Ri=1 (54)

and according to (11)

ew1 ≡ ew|Ri=1 = 0.00150. (55)

Of interest first is the limiting case Ri0 → 1, in which case the calculation becomes
degenerate (the solution begins and ends at x̂ = 0). In this case Û 1 = Û c,1 = 1, where

Û c,1 denotes the conjugate value of Û 1, so that

ϕsupcrit,1 ≡ [ϕsupcrit(Ri0, cf )]|Ri0=1 = 2

(
1 +

3

2

ew1

cf

)
. (56)
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By symmetry, it follows that

ϕsubcrit,1 = ϕsubcrit(Ri, cf )|Ri=1 = ϕsupcrit,1 = 2

(
1 +

3

2

ew1

cf

)
. (57)

In fact, the values of ϕsupcrit for the case Ri =1 in figure 6 and ϕsubcrit for the case
Ri = 1 in figure 8, which were obtained numerically, correspond to the predictions of
(56) and (57).

Now a supercritical solution for Û as a function of Ri that (i) satisfies the upstream
boundary condition (18a) at Ri = Ri0 and (ii) the condition (53) such that the solution
passes through Ri = 1 with no singularity can be written as

Û =
ϕsupcrit(Ri0, cf )

ϕsupcrit(Ri, cf )
. (58)

In order to demonstrate that (58) is a solution, however, it also must be shown to
satisfy (18). Setting ϕ = ϕsupcrit(Ri0, cf ), substituting (58) into the right-hand sides of
(18a)–(18c), and reducing with (19a), the latter equations become

dÛ

dx̂
=

−1 − ew

cf

(
1 + 1

2
Ri

)
+ 1

2
Riϕsupcrit(Ri, cf )

1 − Ri

Û

ĥ
, (59a)

dĥ

dx̂
=

1 +
ew

cf

(
2 − 1

2
Ri

)
− 1

2
Riϕsupcrit(Ri, cf )

1 − Ri
, (59b)

dq̂

dx̂
= −ϕsupcrit(Ri, cf )

q̂

ĥ
, (59c)

subject to the same boundary conditions as before, i.e. (21a–c). An inspection of
(59a)–(59c) and (21a)–(21c) explains the collapse of the curves of figure 11 and 12
into a single line for a given value of cf ; the solution to the problem has collapsed
into a single function of Ri that is independent of the upstream Richardson number
Ri0.

Further substituting (58) into the left-hand side of (59a) and reducing with (19a),
it is found that

dÛ

dx̂
= −ϕsupcrit(Ri0, cf )

ϕ2
supcrit(Ri, cf )

dϕsupcrit

dRi

dRi

dx̂

=

−1 − ew

cf

(
1 + 1

2
Ri

)
+ 1

2
Ri ϕsupcrit(Ri, cf )

1 − Ri

1

ĥ

ϕsupcrit(Ri0, cf )

ϕsupcrit(Ri, cf )
. (60)

It can be readily worked out from (18) and (19a) that

dRi

dx̂
=

1 +
ew

cf

(
1 + 1

2
Ri

)
− 1

3

(
1 + 1

2
Ri

) ϕ

Û

1 − Ri
. (61)

Reducing (61) with (58) and substituting into (60), a differential equation governing
ϕsupcrit as a function of Ri is obtained such that (58) is a solution to the problem. It
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takes the form

dϕsupcrit

dRi
=

1 +
ew

cf

(
1 + 1

2
Ri

)
− 1

2
Riϕsupcrit

1 +
ew

cf

(
1 + 1

2
Ri

)
− 1

3

(
1 + 1

2
Ri

)
ϕsupcrit

. (62)

The above equation provides a direct way to solve for ϕsupcrit as a function of Ri � 1
for any specified value of cf . The boundary condition on (62) is seen from (56) to be

ϕsupcrit|Ri0=1 = 2

(
1 +

3

2

ew1

cf

)
. (63)

As might be expected, the right-hand side of (62) is singular at Ri =1, but it is easily
found with the use of L’Hôpital’s rule that where

ϕ′
1 ≡ dϕsupcrit

dRi

∣∣∣∣
Ri=1

, ϕ1 ≡ ϕsupcrit,1, r =
1

1.0204
, (64)

the following is satisfied;

ϕ′
1 =

−2ew1

cf

(
3
2
r − 1

2

)
+

{[
2ew1

cf

(
3
2
r − 1

2

)]2

+ 8
3
ϕ1

[
ew1

cf

(
3
2
r − 1

2

)
+ 1

2
ϕ1

]}1/2

2
. (65)

A numerical solution of (62) subject to (63) and (65) was found to yield the curves
of figure 6 (after transforming Ri → Ri0) within a fractional error of 0.002.

The curves of ϕ̃ =ϕsupcrit(Ri0, cf )/Û c(Ric; Ri0, cf ) versus Ric in figure 11 all plot
above ϕsupcrit,1 = ϕsubcrit,1 for Ric > 1. From (46b) and (58), it is seen that

ϕ̃ =
ϕsupcrit(Ri0, cf )

Û c(Ric; Ri0, cf )
= ϕsupcrit(Ri, cf )

√
1 + 8/Ri − 1

2
. (66)

It is easily demonstrated from (66) and the values of figure 6 that

ϕsupcrit(Ri, cf )

√
1 + 8/Ri − 1

2
� ϕsupcrit,1, (67)

with the equality holding only for the case Ri = 1.
The criterion according to which the threshold condition for the existence of a

hydraulic jump to a subcritical flow that eventually reaches a Richardson number of
unity, i.e. ϕ � ϕsupcrit(Ri0, cf ), is seen to be built into the structure of the governing
equations.

8. Physical interpretation of the result
The existence of a critical value of ϕ = r0vs/(cf U0) above which no solution to the

‘jump problem’ is possible merits an explanation in terms of the governing physics.
Equations (4)–(6) reduce with the aid of (10), (12)–(14), the assumption of vanishing
bed slope and the neglect of erosion of bed sediment to the steady forms

dU 2h

dx
= −1

2
Rg

d

dx

(
qh

U

)
− cf U 2, (68a)

dUh

dx
= ewU, (68b)
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dq

dx
= −r0vs

q

Uh
. (68c)

The problem of a steady conservative flow is recovered by setting vs = 0. The first
term on the right-hand side of (68a) is the term associated with the net streamwise
force of the pressure gradient. Reducing it with (68c) yields the result

− 1
2
Rg

d

dx

(
qh

U

)
= 1

2
r0Rgvs

q

U 2
− 1

2
Rgq

d

dx

(
h

U

)
. (69)

The first term on the right-hand side of (69) is the term that generates the possibility
of no solution to the ‘jump problem’. It represents a net accelerative force on the flow
owing to sediment deposition. That is, as sediment deposits out of the flow in
accordance with (68c), the streamwise pressure force per unit width (1/2) ρRgCh2 =
(1/2)ρRgqh/U declines in the streamwise direction, generating a net positive force
on any control volume.

Substituting (69) back in (68a) yields the relation

dU 2h

dx
= 1

2
r0Rgvs

q

U 2
− 1

2
Rgq

d

dx

(
h

U

)
− cf U 2, (70)

in which the net accelerative effect on the flow owing to sediment deposition is clear.
Evidently the term containing the fall velocity suppresses the ability of a supercritical
flow to decelerate toward a Richardson number of unity, and likewise suppresses the
ability of a subcritical flow to accelerate toward a Richardson number of unity.

To see how a net force generated by sediment deposition, which never changes
sign, can suppress the ability of some flows to decelerate and others to accelerate, it
is necessary to reduce (70) a bit more. A reduction of (70) with (68b), (68c) and (12)
gives:

(1 − Ri)
h

cf U

dU

dx
= 1

2
Ri

r0

cf

vs

U
− ew

cf

(
1 + 1

2
Ri

)
− 1. (71)

In (71) the accelerative pressure term associated with sediment deposition, i.e. the first
term on the right-hand side, has not changed sign. The effect of the other pressure
term, i.e. the last term on the right-hand side of (69), however, is to generate a term
(1 − Ri) multiplying the spatial derivative of flow velocity in (71). For a supercritical
flow, (1 − Ri) is positive, so that the pressure term associated with deposition adds a
positive term to dU/dx and hinders the streamwise decrease in velocity as the flow
decelerates toward Ri = 1. For a subcritical flow, (1−Ri) is negative, so the same term
hinders the streamwise increase in velocity as the flow accelerates toward Ri = 1. When
the offending term, i.e. the first term on the right-hand side of (71), is sufficiently
strong, i.e. when ϕ > ϕsupcrit (supercritical flow) or ϕ >ϕsubcrit (subcritical flow), the
suppressive effect of sediment deposition is so strong that a critical Richardson
number cannot be reached.

That the offending term does scale with the dimensionless parameter ϕ introduced
in (20) can be shown by casting (71) in terms of the dimensionless variables defined
in (17) and (19). The result is

(
1 − Ri0

q̂

Û 3

)
ĥ

Û

dÛ

dx̂
= 1

2
ϕRi0

q̂

Û 4
− ew

cf

(
1 + 1

2
Ri0

q̂

Û 3

)
− 1. (72)

In analogy to (71), the offending term is the first term on the right-hand side of (72).
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9. Application at laboratory and field scale
The experiments of Garcia (1989) offer a means to test the criterion (50) for the

occurrence of a hydraulic jump at a slope break. As noted in § 1, these experiments
correspond precisely to the configuration of figure 2. Experiments were conducted
with four grades of sediment, each with a different characteristic grain size D: NOVA
(D = 4 µm), DAPER (D = 9 µm), GLASSA (D =30 µm) and GLASSB (D = 65 µm), as
shown in table 1. The kinematic viscosity of the water ν was computed from the water
temperature θ given in the table; the fall velocity vs for each grade was then computed
from a relation of Dietrich (1982) using the values for D, R and ν in the table.

Direct measurements for the flow layer thicknesses h0 and layer-averaged flow
velocities U0 and volume sediment concentration C0 at the slope break of figure 2
are not reported in Garcia (1989). Kostic & Parker (2004, 2006) were, however, able
to compute them upon calibrating a numerical model to the available data from
Garcia (1989). Good fits to the available data were found for the value cf = 0.01
for all experiments, and r0 = 1 for NOVA and DAPER and r0 = 2 for GLASSA and
GLASSB. The computed values of h0, U0 and C0 at the slope break are given in
table 1, along with the assumed values of r0. Also included in the table are the
computed values of ϕ and ϕsubcrit.

Garcia (1989) observed hydraulic jumps in all reported experiments using NOVA
and DAPER. The formulation predicts these jumps, in that ϕ < ϕsupcrit in every case.
Garcia did not observe hydraulic jumps in all reported experiments using GLASSA
and GLASSB. The formulation again predicts the absence of jumps, in that ϕ >ϕsupcrit

in every case.
A sample application is offered here at field scale. The numbers are loosely based

on calculations for the Amazon Submarine Fan by Pirmez & Imran (2003), but have
been modified to reflect relatively swift flows emanating from the Amazon Submarine
Canyon. The values of (U0, h0, C0, r0, cf , R) are taken to be (10 m s−1, 50 m, 0.0124, 2.5,
0.002, 1.65); the values of Ri0 and ϕsupcrit are found to be 0.10 and 1.631. As grain size
is varied from 50 to 250 µm, fall velocity vs (calculated from the relation of Dietrich
1982 at 20 ◦C for reference) varies from 0.22 to 3.04 cm s−1, yielding values of ϕ ranging
from 0.27 to 3.81. Based on these calculations, a hydraulic jump to Richardson-critical
flow is possible only for sediment finer than about 141 µm (figure 13).

The above result applies only to a turbidity current carrying pure sand. It is likely
that under some conditions a turbidity current is mostly driven by fine mud which
does not readily deposit, but also carries a measurable fraction of sand which can
exchange with the bed. Such a current may be able to undergo a hydraulic jump at
a slope break while leaving a deposit of mostly sand.

10. Discussion
The theory presented above is formulated in the context of a layer-averaged model

that employs the slender-flow approximations, i.e. the approximations that lead to the
shallow-water formulation in the case of open channel flow. Such models have some
limitations. One such limitation concerns the description of the internal hydraulic
jump used here, i.e. that of Yih & Guha (1955). Wood & Simpson (1984), for
example, have shown that the model of Yih & Guha applied to a two-layer flow of
finite depth leads to the unlikely result of a (typically small but non-zero) net energy
gain across the jump in the upper layer. Wood & Simpson have associated this result
with the implicit assumption of hydrostatic pressure on the curved face of the jump,
resulting in a slight underestimate of the force on the sloping face. They offer an
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U0 D50 ν × 107 vs × 105

EXP. h0 (m) (m s−1) C0 × 103 R Ri0 (µm) θ (◦C) (m2 s−1) (m s−1) r0 ϕ ϕsupcrt Predicted Observed

NOVA1 0.078 0.064 0.664 1.65 0.203 4 25.5 8.93 1.15 1 0.018 1.282 Jump Jump
NOVA2 0.065 0.071 0.985 1.65 0.208 4 25.0 9.04 1.14 1 0.016 1.295 Jump Jump
NOVA4 0.066 0.099 2.159 1.65 0.236 4 25.0 9.04 1.14 1 0.011 1.358 Jump Jump
DAPER1 0.078 0.061 0.671 1.65 0.225 9 26.0 8.83 7.31 1 0.119 1.333 Jump Jump
DAPER2 0.079 0.060 0.632 1.65 0.221 9 26.0 8.83 7.31 1 0.121 1.324 Jump Jump
DAPER4 0.063 0.085 0.132 1.65 0.187 9 26.5 8.73 7.41 1 0.088 1.244 Jump Jump
DAPER6 0.060 0.090 1.627 1.65 0.196 9 25.5 8.93 7.21 1 0.080 1.267 Jump Jump
DAPER7 0.060 0.101 3.344 1.65 0.318 9 23.0 9.44 6.77 1 0.067 1.526 Jump Jump
GLASSA1 0.137 0.039 0.087 1.50 0.128 30 25.5 8.93 8.31 2 4.276 1.089 No jump No jump
GLASSA2 0.114 0.049 0.186 1.50 0.145 30 26.0 8.83 8.40 2 3.458 1.137 No jump No jump
GLASSA4 0.119 0.046 0.155 1.50 0.141 30 26.0 8.83 8.40 2 3.657 1.126 No jump No jump
GLASSA5 0.110 0.051 0.218 1.50 0.149 30 26.0 8.83 8.40 2 3.289 1.148 No jump No jump
GLASSA7 0.120 0.057 0.262 1.50 0.157 30 26.0 8.83 8.40 2 2.944 1.168 No jump No jump
GLASSA9 0.098 0.076 0.637 1.50 0.176 30 26.5 8.73 8.50 2 2.244 1.216 No jump No jump
GLASSB1 0.305 0.033 0.005 1.50 0.023 65 25.0 9.04 3.54 2 21.74 none No jump No jump
GLASSB2 0.254 0.040 0.013 1.50 0.034 65 23.5 9.34 3.44 2 17.32 0.067 No jump No jump
GLASSB3 0.339 0.029 0.003 1.50 0.019 65 23.0 9.44 3.41 2 23.48 none No jump No jump

Table 1. Test of the criterion for a hydraulic jump versus the experimental data of Garcia (1989).
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Figure 13. ϕ and ϕsupcrit versus grain size D for a current with the values (U0, h0, C0, r0, cf ,

R) = (10 m s−1, 50 m, 0.0124, 2.5, 0.002, 1.65) and a water temperature θ of 20 ◦C. These values
yield in turn the values (Ri0, ϕsupcrit) = (0.10, 1.631). The plot shows that a hydraulic jump to
Richardson-subcritical flow is possible only for a turbidity current driven by sediment finer
than about 141 µm.

alternative formulation for an internal hydraulic jump, which overcomes this defect.
The case considered in the present analysis, however, is that of a turbidity current
bounded above by an infinite depth of still ambient water at hydrostatic equilibrium.
In this limit, the revised relation of Wood & Simpson (1984) for energy loss across
the jump, i.e. (5) therein, reduces precisely to the result of Yih & Guha (1955), i.e. (7)
in Wood & Simpson (1984). That is, when the upper layer is of infinite extent and at
rest, there is neither energy gain nor loss in the upper layer across the jump, whereas
there is always energy loss in the moving lower layer.

The present model provides an excellent predicting tool, as long as the parameters
r0 and cf can be first calibrated to the data. Formulations that preserve the vertical
structure of the flow, such as that of Imran, Kassem & Khan (2004), however, have
the advantage of predicting all the structure required to infer a value of r0. Peakall
(personal communication, 2004) has pointed out that, in general, r0 can be expected to
be a function of flow conditions, as outlined in Parker (1982). A model that preserves
the vertical structures of the flow allows this variation to be predicted as well.

The work presented here could thus be improved by moving from a layer-averaged
model to one that includes both the vertical and transverse as well as streamwise
structure of the flow. Work by Imran, Parker & Katopodes (1998), Felix (2001) and
Imran et al. (2004), for example, suggest avenues by which these generalizations might
be accomplished.

Turbidity currents can entrain bed sediment as well as deposit sediment onto the
bed. That is, the sediment entrainment coefficient es in (6) and (15a–c) need not
be zero. Kostic & Parker (2004, 2006) have studied the effect of including sediment
entrainment in a model of the response of a turbidity current to a slope break. In
correspondence to the work reported here, they have also found that sufficiently large
values of the ratio vs/U0 cause a turbidity current to traverse a slope break of the
type in figure 2 without undergoing a hydraulic jump. The similarity collapse reported
in the present work can no longer be obtained, however, when sediment entrainment
is included in any realistic way.
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The present analysis pertains to a quasi-steady turbidity current flowing over
a prescribed bed with a slope break. Over time, however, the turbidity current
would gradually change the bed profile through the deposition of sediment onto (or
entrainment of sediment from) the bed. This morphodynamic evolution would occur
over a time scale that is much longer than that required to set up the quasi-steady
flow described here. The morphodynamics of turbidity current bed interaction is
considered in Kostic & Parker (2004, 2006). They have found that under the right
conditions the turbidity current can leave a signature in the vicinity of the slope break
in the form of a backward-facing step in the bed profile.

11. Conclusion
A one-dimensional supercritical dense bottom flow flowing from a region with a

positive bed slope onto a domain of vanishing slope ending in a free overfall (figure 2)
might be expected to undergo a hydraulic jump before reaching the free overfall. In
the case of conservative flows driven by, for example, thermohaline effects, there is
only one possible exception to this behaviour; if the length L of the horizontal reach
is too short, conditions for a jump may not be reached on the domain. (If L is too
long, the jump will occur on the sloping bed upstream of the transition, and the flow
will no longer be supercritical at the transition.)

Turbidity currents are non-conservative dense bottom flows, in that the agent of
the density difference can change owing to sediment entrainment from or deposition
onto the bed. While Garcia (1989, 1993) was able to experimentally produce hydraulic
jumps on the domain of figure 2 with fine-grained (4 µm and 9 µm) turbidity currents,
no hydraulic jump was evident for sufficiently coarse (30 µm and 65 µm) material,
even though conditions were otherwise similar. The experiments suggest that under
certain conditions the physics of the problem may render a hydraulic jump impossible
for any length of domain, so that the ‘jump problem’ described in § 1 may have no
solution.

In the case of purely depositional turbidity currents, the analysis yields a critical
value of the dimensionless parameter ϕ = r0vs/(cf U0), where vs denotes sediment fall
velocity, cf denotes bed friction coefficient, U0 denotes flow velocity at the slope
break and r0 denotes the ratio of near-bed to layer-averaged suspended sediment
concentration, above which the ‘jump problem’ has no solution. This critical value
ϕsupcrit is an order-one parameter that is a function of the bulk Richardson number
Ri0 at the slope break and the friction coefficient cf .

An application of the analysis to the results of Garcia (1989, 1993) essentially
confirms the results found there. In the case of the 4 µm (NOVA) and 9 µm (DAPER)
sediments, the inferred values of ϕ fall well below the critical values above which
the ‘jump problem’ has no solution. This corresponds with the fact that jumps were
observed for these experiments. In the case of 30 µm material (GLASSA), the inferred
values of ϕ are about twice the critical values, in agreement with the fact that no
jump was observed. In the case of the 65 µm material (GLASSB), the inferred values
of ϕ are well above the critical values, again confirming the observation that no jumps
were observed. A sample calculation illustrates how the methodology of the paper
can be applied at field scale.

This material is based on work supported by ExxonMobil Upstream Research
Corporation and the STC Program of the National Science Foundation under Agree-
ment Number EAR-0120914. B. E. Prather and C. Pirmez, and their parent company
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Shell International Exploration and Production are sincerely thanked for introducing
the authors to and allowing the reproduction of figure 1.
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